\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech II Year I Semester Regular \& Supplementary Examinations March-2023 FLUID MECHANICS
 (Civil Engineering)

Time: 3 hours

(Answer all Five Units $5 \times 12=60$ Marks)
 UNIT-I

1 Define the physical properties of fluids and Write its units.

OR

2 a State Pascal's law and Derive pressure variation in liquid at rest.
b Derive the Equation for Center of Pressure of vertical plane surface.

UNIT-II

3 a Define Local Acceleration and Velocity Potential function with formulae
b A 30 cm dia. pipe conveying water branches into two pipes of dia. 20 cm and 15 cm respectively. If the average velocity in the 30 cm dia. pipe is $2.5 \mathrm{~m} / \mathrm{s}$. Find the discharge in this pipe. Also determine the velocity in 15 cm pipe. If the average velocity in 20 cm diameter pipe is $2 \mathrm{~m} / \mathrm{s}$.

OR

4 Derive Continuity Equation in 3-Dimensional flow.

UNIT-III

5 Derive the Bernoulli's energy equation with assumptions.

OR

6 a Give short notes on Energy correction factor and momentum correction factor.
b A rectangular notch 2 m wide as a constant head of 500 mm . Find the discharge over the notch, if co-efficient of discharge for the notch is 0.62 and $g=9.81$.

UNIT-IV

7 Find the head lost due to friction in a pipe of dia 300 mm \& length 50 m through which water is flowing at a velocity of $3 \mathrm{~m} / \mathrm{s}$ using :
i) Darcy's formula
ii) Chezy'sformula for which $C=60$. Take kinematic viscosity of for water $=0.01$ stoke.

OR

8 A syphon is $\varnothing 200 \mathrm{~mm}$ connects two reservoirs having a difference in elevation of 20 m . The length of the syphon is 500 m and the summit is 3 m above the water level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 100 m . Determine the discharge through the syphon \& also pressure at the summit. Neglect minor losses. The coefficient of the friction $f=0.005$.

UNIT-V

9 Explain in detail about Reynolds experiment.

OR

10 Derive an expression for velocity distribution in turbulent flow.
*** END ***

CO1 L2 12M

CO1 L2 $\quad 6 \mathrm{M}$
CO1 L2 $\quad 6 \mathrm{M}$

CO2 L2 4M
$\mathrm{CO} 2 \mathrm{~L} 3 \quad 8 \mathrm{M}$

CO2 L3 12M

CO3 L3 12M

CO3 L2 6M
CO4 L2 6M

CO5 L3 12M

CO5 L3 12M

CO6 L2 12M

CO6 L3 12M

（0）mationdex

ex．una
$2 \cdot$
路

明 W 578 157 （1） 4012

32
What extye
\qquad \ddagger yel
\qquad
全3
\qquad $4 x^{2}+4 x^{2}+3$ 2
\square
 12： 48

 67ryave
\qquad

 $4+.984+=3$

